Bears on natural selection -- The term used in a wide sense -- Geometrical powers of increase -- Rapid increase of naturalised animals and plants -- Nature of the checks to increase -- Competition universal -- Effects of climate -- Protection from the number of individuals -- Complex relations of all animals and plants throughout nature -- Struggle for life most severe between individuals and varieties of the same species; often severe between species of the same genus
The relation of organism to
organism
the most important of all relations B E F 0 R E entering on the
subject of this chapter, I must make a few preliminary remarks, to
show how the struggle for existence bears on Natural Selection. It has
been seen in the last chapter that amongst organic beings in a state
of nature there is some individual variability; indeed I am not aware
that this has ever been disputed. It is immaterial for us whether a
multitude of doubtful forms be called species or sub-species or
varieties; what rank, for instance, the two or three hundred doubtful
forms of British plants are entitled to hold, if the existence of any
well-marked varieties be admitted. But the mere existence of
individual variability and of some few well-marked varieties, though
necessary as the foundation for the work, helps us but little in
understanding how species arise in nature. How have all those
exquisite adaptations of one part of the organisation to another part,
and to the conditions of life, and of one distinct organic being to
another being, been perfected? We see these beautiful co-adaptations
most plainly in the woodpecker and misseltoe; and only a little less
plainly in the humblest parasite which clings to the hairs of a
quadruped or feathers of a bird; in the structure of the beetle which
dives through the water; in the plumed seed which is wafted by the
gentlest breeze; in
Again, it may be asked, how is it that varieties, which I have called incipient species, become ultimately converted into good and distinct species, which in most cases obviously differ from each other far more than do the varieties of the same species? How do those groups of species, which constitute what are called distinct genera, and which differ from each other more than do the species of the same genus, arise? All these results, as we shall more fully see in the next chapter, follow inevitably from the struggle for life. Owing to this struggle for life, any variation, however slight and from whatever cause proceeding, if it be in any degree profitable to an individual of any species, in its infinitely complex relations to other organic beings and to external nature, will tend to the preservation of that individual, and will generally be inherited by its offspring. The offspring, also, will thus have a better chance of surviving, for, of the many individuals of any species which are periodically born, but a small number can survive. I have called this principle, by which each slight variation, if useful, is preserved, by the term of Natural Selection, in order to mark its relation to man's power of selection. We have seen that man by selection can certainly produce great results, and can adapt organic beings to his own uses, through the accumulation of slight but useful variations, given to him by the hand of Nature. But Natural Selection, as we shall hereafter see, is a power incessantly ready for action, and is as immeasurably superior to man's feeble efforts, as the works of Nature are to those of Art.
We will now discuss in a little more detail the struggle for
existence. In my future work this subject shall be treated, as it well
deserves, at much greater length. The elder De Candolle and Lyell have
largely and philosophically shown that all organic beings are exposed
to severe competition. In regard to plants, no one has treated this
subject with more spirit and ability than W. Herbert, Dean of
Manchester, evidently the result of his great horticultural knowledge.
Nothing is easier than to admit in words the truth of the universal
struggle for life, or more difficult -- at least I have found it
so -- than constantly to bear
I should premise that I use the term Struggle for Existence in a large and metaphorical sense, including dependence of one being on another, and including (which is more important) not only the life of the individual, but success in leaving progeny. Two canine animals in a time of dearth, may be truly said to struggle with each other which shall get food and live. But a plant on the edge of a desert is said to struggle for life against the drought, though more properly it should be said to be dependent on the moisture. A plant which annually produces a thousand seeds, of which on an average only one comes to maturity, may be more truly said to struggle with the plants of the same and other kinds which already clothe the ground. The missletoe is dependent on the apple and a few other trees, but can only in a far-fetched sense be said to struggle with these trees, for if too many of these parasites grow on the same tree, it will languish and die. But several seedling missletoes, growing close together on the same branch, may more truly be said to struggle with each other. As the missletoe is disseminated by birds, its existence depends on birds; and it may metaphorically be said to struggle with other fruit-bearing plants, in order to tempt birds to devour and thus disseminate its seeds rather than those of other plants. In these several senses, which pass into each other, I use for convenience sake the general term of struggle for existence.
A struggle for existence inevitably follows from the high rate at
which all organic beings tend to increase. Every being, which
There is no exception to the rule that every organic being naturally increases at so high a rate, that if not destroyed, the earth would soon be covered by the progeny of a single pair. Even slow-breeding man has doubled in twenty-five years, and at this rate, in a few thousand years, there would literally not be standing room for his progeny. Linnaeus has calculated that if an annual plant produced only two seeds -- and there is no plant so unproductive as this -- and their seedlings next year produced two, and so on, then in twenty years there would be a million plants. The elephant is reckoned to be the slowest breeder of all known animals, and I have taken some pains to estimate its probable minimum rate of natural increase: it will be under the mark to assume that it breeds when thirty years old, and goes on breeding till ninety years old, bringing forth three pairs of young in this interval; if this be so, at the end of the fifth century there would be alive fifteen million elephants, descended from the first pair.
But we have better evidence on this subject than mere theoretical
calculations, namely, the numerous recorded cases of the astonishingly
rapid increase of various animals in a state of nature, when
circumstances have been favourable to them during two or three
following seasons. Still more striking is the evidence from our
domestic animals of many kinds which have
In a state of nature almost every plant produces seed, and amongst animals there are very few which do not annually pair. Hence we may confidently assert, that all plants and animals are tending to increase at a geometrical ratio, that all would most rapidly stock every station in which they could any how exist, and that the geometrical tendency to increase must be checked by destruction at some period of life. Our familiarity with the larger domestic animals tends, I think, to mislead us: we see no great destruction falling on them, and we forget that thousands are annually slaughtered for food, and that in a state of nature an equal number would have somehow to be disposed of.
The only difference between organisms which annually produce eggs
or seeds by the thousand, and those which produce extremely few, is,
that the slow-breeders would require a few more years to people, under
favourable conditions, a whole
In looking at Nature, it is most necessary to keep the foregoing considerations always in mind -- never to forget that every single organic being around us may be said to be striving to the utmost to increase in numbers; that each lives by a struggle at some period of its life; that heavy destruction inevitably falls either on the young or old, during each generation or at recurrent intervals. Lighten any check, mitigate the destruction ever so little, and the number of the species will almost instantaneously increase to any amount. The face of Nature may be compared to a yielding surface, with ten thousand sharp wedges packed close together and driven inwards by incessant blows, sometimes one wedge being struck, and then another with greater force.
What checks the natural tendency of each species to increase in
number is most obscure. Look at the most vigorous species;
The amount of food for each species of course gives the extreme
limit to which each can increase; but very frequently it is not the
obtaining food, but the serving as prey to other animals, which
determines the average numbers of a species. Thus, there seems to be
little doubt that the stock of partridges, grouse, and hares on any
large estate depends chiefly on the destruction of vermin. If not one
head of game were shot during the next twenty years in England, and,
at the same time, if no vermin were destroyed, there would, in all
probability, be less game than at present, although hundreds of
thousands of game animals are now annually killed. On the other hand,
in some cases, as with
Climate plays an important part in determining the average numbers
of a species, and periodical seasons of extreme cold or drought, I
believe to be the most effective of all checks. I estimated that the
winter of 1854-55 destroyed four-fifths of the birds in my own
grounds; and this is a tremendous destruction, when we remember that
ten per cent. is an extraordinarily severe mortality from epidemics
with man. The action of climate seems at first sight to be quite
independent of the struggle for existence; but in so far as climate
chiefly acts in reducing food, it brings on the most severe struggle
between the individuals, whether of the same or of distinct species,
which subsist on the same kind of food. Even when climate, for
instance extreme cold, acts directly, it will be the least vigorous,
or those which have got least food through the advancing winter, which
will suffer most. When we travel from south to north, or from a damp
region to a dry, we invariably see some species gradually getting
rarer and rarer, and finally disappearing; and the change of climate
being conspicuous, we are tempted to attribute the whole effect to its
direct action. But this is a very false view: we forget that each
species, even where it most abounds, is constantly suffering enormous
destruction at some period of its life, from enemies or from
competitors for the same place and food; and if these enemies or
competitors be in the least degree favoured by any slight change of
climate, they will increase in numbers, and, as each area is already
fully stocked with inhabitants, the other species will decrease. When
we travel southward and see a species decreasing in numbers, we may
feel sure that the cause lies quite as much in other species being
favoured, as in this one being hurt. So it is when we travel
northward, but in a somewhat lesser degree, for the number of species
of all kinds, and therefore of competitors, decreases northwards;
hence in going northward, or in ascending a mountain, we far oftener
met with stunted forms, due to the
That climate acts in main part indirectly by favouring other species, we may clearly see in the prodigious number of plants in our gardens which can perfectly well endure our climate, but which never become naturalised, for they cannot compete with our native plants, nor resist destruction by our native animals.
When a species, owing to highly favourable circumstances, increases inordinately in numbers in a small tract, epidemics -- at least, this seems generally to occur with our game animals -- often ensue: and here we have a limiting check independent of the struggle for life. But even some of these so-called epidemics appear to be due to parasitic worms, which have from some cause, possibly in part through facility of diffusion amongst the crowded animals, been disproportionably favoured: and here comes in a sort of struggle between the parasite and its prey.
On the other hand, in many cases, a large stock of individuals of
the same species, relatively to the numbers of its enemies, is
absolutely necessary for its preservation. Thus we can easily raise
plenty of corn and rape-seed, etc, in our fields, because the
seeds are in great excess compared with the number of birds which feed
on them; nor can the birds, though having a superabundance of food at
this one season, increase in number proportionally to the supply of
seed, as their numbers are checked during winter: but any one who has
tried, knows how troublesome it is to get seed from a few wheat or
other such plants in a garden; I have in this case lost every single
seed. This view of the necessity of a large stock of the same species
for its preservation, explains, I believe, some singular facts in
nature, such as that of very rare plants being sometimes extremely
abundant in the few spots where they do occur; and that of some social
plants being social, that is, abounding in individuals, even on the
extreme confines of their range. For in such cases, we may believe,
that a plant could exist only where the conditions of its life were so
favourable that many could exist together, and thus save each other
from utter destruction. I should add that the good effects of frequent
intercrossing, and the ill effects of close interbreeding, probably
came into play in some of
Many cases are on record showing how complex and unexpected are the
checks and relations between organic beings, which have to struggle
together in the same country. I will give only a single instance,
which, though a simple one, has interested me. In Staffordshire, on
the estate of a relation where I had ample means of investigation,
there was a large and extremely barren heath, which had never been
touched by the hand of man; but several hundred acres of exactly the
same nature had been enclosed twenty-five years previously and planted
with Scotch fir. The change in the native vegetation of the planted
part of the heath was most remarkable, more than is generally seen in
passing from one quite different soil to another: not only the
proportional numbers of the heath-plants were wholly changed, but
twelve species of plants (not counting grasses and carices) flourished
in the plantations, which could not be found on the heath. The effect
on the insects must have been still greater, for six insectivorous
birds were very common in the plantations, which were not to be seen
on the heath; and the heath was frequented by two or three distinct
insectivorous birds. Here we see how potent has been the effect of the
introduction of a single tree, nothing whatever else having been done,
with the exception that the land had been enclosed, so that cattle
could not enter. But how important an element enclosure is, I plainly
saw near Farnham, in Surrey. Here there are extensive heaths, with a
few clumps of old Scotch firs on the distant hill-tops: within the
last ten years large spaces have been enclosed, and self-sown firs are
now springing up in multitudes, so close together that all cannot
live. When I ascertained that these young trees had not been sown or
planted, I was so much surprised at their numbers that I went to
several points of view, whence I could examine hundreds of acres of
the unenclosed heath, and literally I could not see a single Scotch
fir, except the old planted clumps. But on looking closely between the
stems of the heath, I found a multitude of seedlings and little trees,
which had been perpetually browsed down by the cattle. In one square
yard, at a point some hundreds yards distant from one of the old
clumps, I counted thirty-two little trees; and one
Here we see that cattle absolutely determine the existence of the Scotch fir; but in several parts of the world insects determine the existence of cattle. Perhaps Paraguay offers the most curious instance of this; for here neither cattle nor horses nor dogs have ever run wild, though they swarm southward and northward in a feral state; and Azara and Rengger have shown that this is caused by the greater number in Paraguay of a certain fly, which lays its eggs in the navels of these animals when first born. The increase of these flies, numerous as they are, must be habitually checked by some means, probably by birds. Hence, if certain insectivorous birds (whose numbers are probably regulated by hawks or beasts of prey) were to increase in Paraguay, the flies would decrease -- then cattle and horses would become feral, and this would certainly greatly alter (as indeed I have observed in parts of South America) the vegetation: this again would largely affect the insects; and this, as we just have seen in Staffordshire, the insectivorous birds, and so onwards in ever-increasing circles of complexity. We began this series by insectivorous birds, and we have ended with them. Not that in nature the relations can ever be as simple as this. Battle within battle must ever be recurring with varying success; and yet in the long-run the forces are so nicely balanced, that the face of nature remains uniform for long periods of time, though assuredly the merest trifle would often give the victory to one organic being over another. Nevertheless so profound is our ignorance, and so high our presumption, that we marvel when we hear of the extinction of an organic being; and as we do not see the cause, we invoke cataclysms to desolate the world, or invent laws on the duration of the forms of life I
I am tempted to give one more instance showing how plants and
animals, most remote in the scale of nature, are bound
In the case of every species, many different checks, acting at
different periods of life, and during different seasons or years,
probably come into play; some one check or some few being generally
the most potent, but all concurring in determining the average number
or even the existence of the species. In some cases it can be shown
that widely-different checks act on the same species in different
districts. When we look at the plants and bushes clothing an entangled
bank, we are tempted to attribute their proportional numbers and kinds
to what we call chance. But how false a view is this! Every one has
heard that
The dependency of one organic being on another, as of a parasite on
its prey, lies generally between beings remote in the scale of nature.
This is often the case with those which may strictly be said to
struggle with each other for existence, as in the case of locusts and
grass-feeding quadrupeds. But the struggle almost invariably will be
most severe between the individuals of the same species, for they
frequent the same districts, require the same food, and are exposed to
the same dangers. In the case of varieties of the same species, the
struggle will generally be almost equally severe, and we sometimes see
the contest soon decided: for instance, if several varieties of wheat
be sown together, and the mixed seed be resown, some of the varieties
which best suit the soil or climate, or are naturally the most
fertile, will beat the others and so yield more seed, and will
consequently in a few years quite supplant the other varieties. To
keep up a mixed stock of even such extremely close varieties as the
variously coloured sweet-peas, they must be each year harvested
separately, and the seed then mixed in due proportion, otherwise the
weaker kinds will steadily decrease in numbers and disappear. So again
with the varieties of sheep: it has been
As species of the same genus have usually, though by no means invariably, some similarity in habits and constitution, and always in structure, the struggle will generally be more severe between species of the same genus, when they come into competition with each other, than between species of distinct genera. We see this in the recent extension over parts of the United States of one species of swallow having caused the decrease of another species. The recent increase of the missel-thrush in parts of Scotland has caused the decrease of the song-thrush. How frequently we hear of one species of rat taking the place of another species under the most different climates! In Russia the small Asiatic cockroach has everywhere driven before it its great congener. One species of charlock will supplant another, and so in other cases. We can dimly see why the competition should be most severe between allied forms, which fill nearly the same place in the economy of nature; but probably in no one case could we precisely say why one species has been victorious over another in the great battle of life.
A corollary of the highest importance may be deduced from the
foregoing remarks, namely, that the structure of every organic being
is related, in the most essential yet often hidden manner, to that of
all other organic beings, with which it comes into competition for
food or residence, or from which it has to escape, or on which it
preys. This is obvious in the structure of the teeth and talons of the
tiger; and in that of the legs and claws of the parasite which clings
to the hair on the tiger's body. But in the beautifully plumed seed of
the dandelion, and in the flattened and fringed legs of the
water-beetle, the relation seems
The store of nutriment laid up within the seeds of many plants seems at first sight to have no sort of relation to other plants. But from the strong growth of young plants produced from such seeds (as peas and beans), when sown in the midst of long grass, I suspect that the chief use of the nutriment in the seed is to favour the growth of the young seedling, whilst struggling with other plants growing vigorously all around.
Look at a plant in the midst of its range, why does it not double or quadruple its numbers? We know that it can perfectly well withstand a little more heat or cold, dampness or dryness, for elsewhere it ranges into slightly hotter or colder, damper or drier districts. In this case we can clearly see that if we wished in imagination to give the plant the power of increasing in number, we should have to give it some advantage over its competitors, or over the animals which preyed on it. On the confines of its geographical range, a change of constitution with respect to climate would clearly be an advantage to our plant; but we have reason to believe that only a few plants or animals range so far, that they are destroyed by the rigour of the climate alone. Not until we reach the extreme confines of life, in the arctic regions or on the borders of an utter desert, will competition cease. The land may be extremely cold or dry, yet there will be competition between some few species, or between the individuals of the same species, for the warmest or dampest spots.
Hence, also, we can see that when a plant or animal is placed in a
new country amongst new competitors, though the climate may be exactly
the same as in its former home, yet the conditions of its life will
generally be changed in an essential manner. If we wished to increase
its average numbers in its new home, we should have to modify it in a
different way to what we should
It is good thus to try in our imagination to give any form some advantage over another. probably in no single instance should we know what to do, so as to succeed. It will convince us of our ignorance on the mutual relations of all organic beings; a conviction as necessary, as it seems to be difficult to acquire. All that we can do, is to keep steadily in mind that each organic being is striving to increase at a geometrical ratio; that each at some period of its life, during some season of the year, during each generation or at intervals, has to struggle for life, and to suffer great destruction. When we reflect on this struggle, we may console ourselves with the full belief, that the war of nature is not incessant, that no fear is felt, that death is generally prompt, and that the vigorous, the healthy, and the happy survive and multiply.
|