Until now our view of molecular structure has been a static one. In fact, molcules are anything but static. They move about, they vibrate, they rotate, they spin. Sometimes they invert like an umbrella in the wind!! We will examine molecular vibrations when we discuss infra-red spectroscopy, and we will consider umbrella-like inversions when we study nucleophilic aliphiphatic substitution reactions. In this discussion we will restrict our attention to the type of molecular motion known as free rotation.
According to valence bond theory, the positions of two atoms that are bonded together is fixed, which is to say that every pair of bonded atoms has a characteristic bond length. As we saw when we discussed the formation of dihydrogen, this length corresponds to the distance between the bonded nuclei at which the Coulombic attractions of those nuclei for the electrons they share are a maximum. At this distance the potential energy of the bonding electrons is a minimum.
According to VSEPR theory, the potential energy of all of the electrons in a molecule is minimized by maximizing the distance between those electrons. This is another manifestation of the version of Coulomb's Law which states that Like charges repel, and the repulsion leads to a more stable system. It's important to remember that VSEPR theory describes the spatial distribution of electrons around a single atom, the so-called central atom. In molecules that contain more than one central atom, VSEPR theory does not describe the positions of the groups attached to one central with respect to those attached to another central atom. Consider ethane, CH3CH3, for example. VSEPR theory tells us that each carbon atom should be tetrahedral. But it does not say anything about the positions of the hydrogen atoms on one carbon relative to those on the other. In fact, as the interactive model in Figure 1 can demonstrate, the relative positions of the hydrogens vary.
(N.B. You must have the Chem 3D plug-in installed to view this model. To rotate around the C-C bond, first position the molecule so that you can see both carbon atoms. Then shift-click the pointer on each atom. Position the cursor on any atom in the structure while holding down the control key, and click the mouse. A menu will appear: Select Movies, then select Spin Torsional Angles from the Movies sub-menu. The second atom that you selected will begin to spin relative to the first. You may stop the rotation temporarily by holding down the mouse on the green arrow at the bottom of the model window.)
The rotation demonstrated in Figure 1 occurs approximately one million revolutions per second!! That's why it's called free rotation. In fact, this rotation is not free. To understand why it's not free, consider the four views of ethane shown in Figure 2.
The views labeled staggered and eclipsed are called conformations. Figure 3 presents two alternative representations for the front view of the staggered conformation of ethane. These alternatives are self-explanatory.
Exercise 2 If you start with an eclipsed conformation and rotate around the C-C bond of ethane in 20o increments, how many staggered conformations will you generate by the time you have rotated 360o?
The eclipsed conformation has the highest potential energy, while the staggered conformation has the lowest. The difference between the two conformations is 2.8 kcal/mol. This represents a barrier to rotation about the C-C bond, but there is more than enough energy available at room temperature to overcome this barrier, so that the process is described as free rotation.
The angle between a C-H bond on one carbon atom and a C-H bond on the other carbon is called the dihedral angle. In the eclipsed conformation of ethane, the dihedral angles are all 0o. There are two dihedral angles in the staggered conformation, 60o and 180o. These are identified inFigure 5.
Exercise 4 Ethyl told Ester that the dihedral angle between Hc and Hb was 120o. Ester told Ethyl she was a doofus. Who's right? Ethyl Ester
Now let's apply our analysis to a slightly more complex molecule, butane. An interactive model of this molecule is shown in Figure 6. Study the rotation about the C2-C3 bond.
Exercise 5
a. Which conformation is the least stable?
b. Which conformation is the most stable?
c. Which conformation has the same energy as 2?
d. Which conformation has the same energy as 5?
Exercise 6 Draw a potential energy diagram similar to the one shown in Figure 4 for the free rotation about the C2-C3 bond in butane.
Exercise 7 Draw Newman and sawhorse projections of the staggered and eclipsed conformations of butane that are generated by rotation around the C1-C2 bond. Draw a potential energy diagram similar to the one shown in Figure 4 for this process.
Topics