The periodic table is familiar to anyone who has had an introductory course in chemistry. It is a scheme wherein elements are organized into groups according to similarities in their physical and chemical properties. These similarities are a reflection of similarities in the electronic structures of the atoms within a particular group. The discussion that follows focuses on the periodic trends in atomic size and ionization energies to illustrate how our understanding of electronic structure developed. We will call upon Coulomb's Law to interpret and rationalize the data presented. Recall the form of this law:
In the situations that are discussed below q1 represents the nuclear charge, i.e. the atomic number, q2 is the charge on an electron, -1, while r stands for the atomic radius. Fc is the force of attaction between the nucleus and the electron.
Chemists view isolated atoms as small spherical particles. For most people, the radius of the sphere would be an indication of the atom's size. For chemists it's not so simple, neither theoretically nor experimentally. The theoretical problem arises from the Heisenberg uncertainty principle, which tells us that it is not possible to determine with certainty the position of an electron with respect to the nucleus of an atom. The best we can do is to talk about the probability of finding an electron within a certain volume of space that surrounds the nucleus of the atom. Experimentally it is difficult to obtain isolated atoms. Hydrogen, for example, exists as a dinuclear compound rather than a mononuclear atom. While we can measure the "size" of this dinuclear compound, the relationship between its "size" and the radius of the mononuclear atom is not obvious. Since we can't be precise, the meaning of the term atomic radius is necessarily fuzzy. By convention the atomic radius has come to be taken as the radius of a sphere that contains approximately 90% of the electron density of the atom. Figure 1 shows the sizes of a select group of elements arranged according to their positions in the periodic table, i.e. their atomic number. The atomic radius, in picometers, is given below the sphere that represents the atom. The fuzziness of the edges of the spheres is meant to imply the uncertainty inherent in discussions of the size of an atom.
Before we consider the data in Figure 1, you may want to review your knowledge of the periodic table.
The ionization energy of an atom is the amount of energy required to separate an electron from the neutral atom. It is the energy needed to overcome the force of attaction, Fc, between the nucleus and the electron that is farthest from it. Equation 1 depicts the process in general terms. In this equation A represents any atom, while A+ stands for the ion that is produced when an electron, e-, is removed from A.
Figure 2 presents a plot of ionization energies as a function of atomic number for the same elements shown in Figure 1.
Exercise 5 Complete the following statement: Within a given group (column) of the periodic table, the general trend is that the ionization energies of the atoms decrease as their atomic numbers .
Now let's return to our analysis of the data in Figure 2. Here, as you go from oxygen to fluorine, i.e. from q1 = 8 to q1 = 9, the ionization energy increases from 1314 to 1680 kJ/mol. This is consistent with the idea that the 9 protons in the nucleus of the fluorine atom exert a stronger force of attraction for the atom's outermost electron than the 8 protons in the oxygen atom exert on its outermost electron. This trend continues as you go from fluorine to neon; the ionization energy increases from 1680 to 2080 kJ/mol. But, when q1 increases from 10 to 11, the ionization energy drops precipitously from 2080 to 496 kJ/mol! Once again we invoke the idea of electron shells in order to rationalize this result: The electron being removed from the neon atom is in a shell with n = 2, while the electron being removed from the sodium atom occupies the n = 3 shell.
If you look carefully at the data in Figure 2 you can also see evidence for the existence of electronic sub-shells. At first glance it is tempting to conclude that the data suggests three sub-shells, one containing two electrons and two others with three electrons each. However, other evidence indicates that only two sub-shells are warranted, the first containing two electrons and the second holding six. These are the familiar s and p sub-shells; 2s and 2p for the data set shown in red in Figure 2 and 3s and 3p for those in blue.
Finally, note that the red and blue data sets in Figures 1 and 2 each contain eight atoms. This is the basis for the filled shell rules. For an extensive treatment of the periodic table go to WebElements.
Additional Exercises
Topics